Simple Made Easy

Rich Hickey

Simplicity IS prerequisite for
reliability

—dsger W. Dijkstra

Word Origins

= Simple x Fasy
SiIm- plex ease < alse < adjacens
one fold/braid lie near

VS VS

Simple

» One fold/braid » But not
x One role x One instance
x One task x One operation
x One concept x About lack of
Interleaving, not

®x One dimension

cardinality

x Objective

Easy

x Near, at hand x Near our capabillities

®= ONn our hard drive, In = Easy is relative
our tool set, IDE, apt
get, gem install...

x Near to our
understanding/skill set

= familiar

Construct vs Artifact

x \Ve focus on experience of use of construct
® programmer convenience
® programmer replaceabillity
» Rather than the long term results of use
x software quality, correctness
= maintenance, change

® \\le must assess constructs by their artifacts

L IMIts

= Ve can only hope to
make reliable those things
we can understand

x \Ne can only consider a
few things at a time

» [ntertwined things must be
considered together

x Complexity undermines
understanding

Change

» Changes to software require analysis and decisions
x \What will be impacted?
» \Where do changes need to be made”

x Your ability to reason about your program is critical to
changing it without fear

» Not talking about proof, just informal reasoning

Debugging

» \What’s true of every bug
in the field?

x |t has passed the type
checker

= and all the tests

= Your ability to reason
about your program is
critical to debugging

Development Speed

» Emphasizing ease gives a0k

early speed

» |gnoring complexity will
slow you down over the
long haul

Speed

x On throwaway or trivial
projects, nothing much
matters

Time

Fasy Yet Complex?

x Many complicating constructs are
» Succinctly described
= Familiar

= Avallable

= Fasy to use
x \Vhat matters is the complexity they yield

= Any such complexity Is incidental

Benefits of Simplicity

» Fase understanding
» Fase of change

» Fasier debugging

x Flexibility

x policy

» |ocation etc

Making Things Easy

» Bring to hand by Installing

x getting approved for use
x» Become familiar by learning, trying
» But mental capability?

» nNot going to move very far

x make things near by simplifying them

Parens are Hard!

= Not at hand for most x Adding a data structure
for grouping, €.g.
vectors, makes each

» But are they simple? simpler

= Nor familiar

x Not in CL/Scheme = minimal effort can then

make them easy too
® overloaded for calls

and grouping

x for those that bothered
trying, this is a valid
complexity complaint

LISP programmers know the value of
everything and the cost of nothing.

Alan Perlis

What'’s in your Toolkit™?

Complexity Simplicity
State, Objects Values
Methods Functions, Namespaces
vars Managed refs
Inheritance, switch, matching Polymorphism a la carte
Syntax Data
Imperative loops, fold Set functions
Actors Queues
ORM Declarative data manipulation
Conditionals Rules

Inconsistency Consistency

Complect

® [0 Interleave, entwine, braid
= archaic
= Don’t do It!

x Complecting things is the
source of complexity

x Best to avoid in the first place

Compose

® [0 place together

x Composing simple components
IS the key to robust software

Modularity and Simplicity

Modularity and Simplicity

O

Modularity and Simplicity

® Partitioning and stratification don't imply simplicity
x put are enabled by it

x» Don’t be fooled by code organization

State Is Never Simple

Complects value and time
t /s easy, In the at-hand and familiar senses

Interweaves everything that touches it, directly or
iIndirectly

x Not mitigated by modules, encapsulation

Note - this has nothing to do with asynchrony

Not all refs/vars are Equal

x None make state simple
» All warn of state, help reduce it

x Clojure and Haskell refs compose value and time
x Allow you to extract a simple value
» Provide abstractions of time

®= Does your var do that?

The Complexity Toolkit

Construct
State
Objects
Methods
Syntax
Inheritance
Switch/matching
var(iable)s
Imperative loops, fold
Actors
ORM
Conditionals

Complects
Everything that touches it
State, identity, value

Function and state, namespaces

Meaning, order
Types
Multiple who/what pairs

Value, time

what/how

what/who
OMG

Why, rest of program

The Simplicity Toolkit

Construct
Values
Functions
Namespaces
BEF!
Polymorphism a la carte
Managed refs
Set functions
Queues
Declarative data manipulation
Rules
Consistency

Get it via...
final, persistent collections
a.k.a. stateless methods
language support

Maps, arrays, sets, XML, JSON etc

Protocols, type classes
Clojure/Haskell refs
_ibraries
_ibraries
SQL/LINQ/Datalog
Libraries, Prolog
Transactions, values

Environmental Complexity

Resources, e.g. memory, CPU

Inherent complexity in implementation space
» All components contend for them
Segmentation

= waste

Individual policies don’t compose

®» just make things more complex

Programming, when stripped of all its
circumstantial irrelevancies, boils down
to Nno more and no less than very
effective thinking so as to avoid
unmastered complexity, to very vigorous
separation of your many different
CONCeEerns.

—dsger W. Dijkstra

Abstraction for Simplicity

» Abstract
® drawn away
x vS Abstraction as complexity hiding
» \Who, What, When, Where, Why and How

= | don’t know, | don’t want to know

VWVhat

Operations

Form abstractions from related sets of functions
x Small sets

Represent with polymorphism constructs
Specify Inputs, outputs, semantics

» [Use only values and other abstractions

Don’t complect with:

= HOwW

VWho

x Entities iImplementing abstractions
» Build from subcomponents direct-injection style
x Pursue many subcomponents
x .. policy
x Don’t complect with:
x component details

x other entities

How

» |mplementing logic

x Connect to abstractions and entities via polymorphism
constructs

x Prefer abstractions that don’t dictate how
x Declarative tools
x Don’t complect with:

= anything

When, Where

x Strenuously avoid complecting these with anything in
the design

x Can seep In via directly connected objects

» Use queues

Why

x [he policy and rules of the application

x Often strewn everywhere

x |N conditionals

x complected with control flow etc

» Explore rules and declarative logic systems

Information is SImple

x Don’t ruin it

x By hiding it behind a micro-language
® |.e. aclass with information-specific methods
» thwarts generic data composition
® ties logic to representation du jour

» Represent data as data

Simplicity Is not an objective in
art, but one achieves simplicity
despite one's self by entering
INto the real sense of things

Constantin Brancusi

Simplifying

|dentifying individual
threads/roles/dimensions

» Following through the
user story/code

Simplicity i1s a Choice

» Requires vigilance, sensibilities and care

» Your sensibilities equating simplicity with ease and
familiarity are wrong

» Develop sensibilities around entanglement

x Your ‘reliability” tools (testing, refactoring, type systems)
don't care

x and are quite peripheral to producing good software

Simplicity Made Easy

» Choose simple constructs over complexity-generating
constructs

» [t's the artifacts, not the authoring
x Create abstractions with simplicity as a basis
x Simplify the problem space before you start
x Simplicity often means making more things, not fewer

» Reap the benefits!

Simplicity Is the ultimate
sophistication.

L.eonardo da Vincl

